

Affinity chromatography for vaccines purification: EU DiViNe project provides proof of concept

Mikkel Nissum, GSK, Siena, Italy

The DiViNe project has received funding from the European Commission's Horizon 2020 research and innovation programme under Grant Agreement n°635770.

The work described here was sponsored by GlaxoSmithKline Biologicals SA which was involved in all stages of the study conduct and analysis.

Mikkel Nissum is an employee of the GSK group of companies.

Current Challenges in Vaccine Downstream Purification

Non-templated processes leading to long timelines for Process Development

Often have complicated purification schemes leading to high COGS and low yields

Potential to establish a purification **template** with **target specific custom affinity ligands**

Simplifying downstream purification schemes leading to **reduced COGS** and **improved yields**

DiViNe Project

The DiViNe consortium is an EU funded project focused on improvements to vaccine purification processes

The DiViNe project has received funding from the European Commission's Horizon 2020 research and innovation programme under Grant Agreement n°635770.

Nanofitins

Nanofitins derive from Sac7d family found in Sulfolobus acidocaldarius

Robinson et al., Nature (1998)

Extremely stable to heat and acid (85°C and pH 2)

Specific, high affinity binders with conserved original features

Success Criteria: Purification Performance

Criterion	Evaluation	Status
Specificity	NFs demonstrated to be highly specific towards target	$\sqrt{\sqrt{\sqrt{1}}}$
Capacity	High dynamic binding capacity achieved	$\sqrt{\sqrt{2}}$
Ligand stability	NFs resistant to extreme pH (0-13), 1 M NaOH	$\sqrt{\sqrt{2}}$
Mild elution conditions	Elution by change in pH and/or conductivity confirmed	$\sqrt{\sqrt{\sqrt{1}}}$
Engineerability	NF binding pocket is engineerable to improve performance (Hydrophobicity, KD)	$\sqrt{\sqrt{\sqrt{1}}}$
Clearance performance	Clearance demonstrated for DNA, HCP, Bioburden, Endotoxins, IPTG	$\checkmark \checkmark^1$
Cleaning verification	CIP conditions allow column regeneration	$\sqrt{\sqrt{\sqrt{2}}}$
Ligand leakage	No leakage of NF detected	√√ ²
Process duration	Reduction in number of chromatographic steps $3 \rightarrow 1$	$\sqrt{\sqrt{2}}$
¹ Endatovin testing ongoing	² Delaw consitivity with surrent methods	

¹Endotoxin testing ongoing ²Below sensitivity with current methods

6

Success Criteria:

Ligand Screening/Development/Production

Criterion	Evaluation	Status		
Time required	From target to column: 8 months \rightarrow aiming at 4 months in 2020	√√1		
Quantity/Purity of target required	Max 1 mg of target, at least 80% purity	~		
Platformability	NF selection, NF engineering (if required), Immobilization, scale-up platformable	$\sqrt{\sqrt{2}}$		
Supply	High expression yields of homogenous NF in E. coli	$\sqrt{\sqrt{\sqrt{1}}}$		
Column re-use	Cost-effective replacement frequency	√√ ²		
Cost effectiveness	Biosolve simulations demonstrate cost effectiveness compared to conventional process	$\sqrt{\sqrt{\sqrt{1}}}$		
Scalability	Scalability of NF and resin production demonstrated	\\\		
Quality requirements	NF affinity resin will be certified animal-free and antibiotics-free (Protein A resin standards to be followed)	√√ ³		
Carrier selection	NF compatible with resins, membranes, beads			
¹ End-to-end process optimization ongoing ³ Resin certification not yet performed				

¹End-to-end process optimization ongoing ³Resin certification not yet performed ²Expected further improvement in re-use as technology matures ⁴Studies with membrane coupling ongoing

7

Nanofitin Affinity Platform: From Target to Small Scale

Nanofitin Affinity Platform: From Small to Commercial Scale

Case Study I: GAS25 → Current Process 3 Chromatographic Steps

WVC Europe – 30 October 2019

Case Study I: Affinity Purification of GAS25 3→1 Chromatographic Steps

Dynamic binding capacity: 15 mg/mL resin

Attributes	NF process*	Standard process
Purity RPC [%]	94	90
Integrity SEC [%]	91	84
Purity SDS-Page [%]	94	84
HCP-WB	Negative	Negative
DNA reduction [log]	4.8	2.5
DNA/protein ratio [ppm]	47	29
Bioburden (plates)	Negative	Negative
Process yield	60%	38%

SE-HPLC data

Case Study I: Scale Up to 133 mL Column Including Aquaporin Membrane

Case Study II: TF2*→ Focus on Elution Conditions

- Binding: pH 7.4
- Elution: pH 3

Load: 60 mg total protein/ml resin

- Binding: 50 mM Tris 150 mM NaCl
- Elution: 50 mM Tris

Case Study II: TF2*→ NF Selection based on Sequence Family Repartition

TF2* single domain analysis by ELISA assay

TF2* Domain 2

TF2* Domain 3

✓ NF-03 and NF-04 and NF-07 show higher affinity with **TF2* Domain 3**

✓ NF-05 shows higher affinity with **TF2* Domain 2**

✓ Nanofitins from different families recognize different epitope

Case Study II: TF2*→ Focus on Ligand Improvement

From active custom binder to improved ligand

15

Acknowledgements

- Manuel Carrondo
- Ricardo Silva
- Hugo Soares

iBET

- Raquel Fortunato
- Olivier Kitten
- Anne Chevrel

- Nadège Prel
- Achim Schwaemmle
- **Jonas Anders**
- Merck

AQUAPORIN

- Romas Skudas
- Maria Salud Camilleri Rumbau
- **Joerg Vogel**

lisa Innocenti

